Low-density/high-density liquid phase transition for model globular proteins.

نویسندگان

  • Patrick Grosfils
  • James F Lutsko
چکیده

The effect of molecule size (excluded volume) and the range of interaction on the surface tension, phase diagram, and nucleation properties of a model globular protein is investigated using a combination of Monte Carlo simulations and finite temperature classical density functional theory calculations. We use a parametrized potential that can vary smoothly from the standard Lennard-Jones interaction characteristic of simple fluids to the ten Wolde-Frenkel model for the effective interaction of globular proteins in solution. We find that the large excluded volume characteristic of large macromolecules such as proteins is the dominant effect in determining the liquid-vapor surface tension and nucleation properties. The variation of the range of the potential is important only in the case of small excluded volumes such as for simple fluids. The DFT calculations are then used to study the homogeneous nucleation of the high-density phase from the low-density phase including the nucleation barriers, nucleation pathways, and rate. It is found that the nucleation barriers are typically only a few k(B)T and that the nucleation rates are substantially higher than would be predicted by classical nucleation theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

Density functional approach was used to study the isotropic- nematic (I-N) transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition den...

متن کامل

Dynamic Crossover and Liquid-liquid Critical Point in the Tip5p

Water is hypothesized to have a low temperature phase transition line which separates a high density water at high temperatures from a low density water at low temperatures. This negatively sloped first order liquid-liquid phase coexistence line terminates at a critical point known as the liquid-liquid critical point. This critical point is hypothesized to exist in a deeply supercooled region o...

متن کامل

Dynamical behavior near a liquid-liquid phase transition in simulations of supercooled water.

We examine the behavior of the diffusion coefficient of the ST2 model of water over a broad region of the phase diagram via molecular dynamics simulations. The ST2 model has an accessible liquid-liquid transition between low-density and high-density phases, making the model an ideal candidate to explore the impacts of the liquid-liquid transition on dynamics. We locate characteristic dynamical ...

متن کامل

Polyamorphism and density anomalies in network-forming fluids: Zeroth- and first-order approximations

A molecular model of network-forming liquids has been formulated in terms of a lattice fluid in which bond formation depends strongly on molecular orientations and local density. The model has been solved in the zerothand first-order approximations for molecular and bond geometries similar to water or silica. Results are presented in the form of fluid-phase boundaries, limits of stability, and ...

متن کامل

Revisiting the flocking transition using active spins.

We consider an active Ising model in which spins both diffuse and align on lattice in one and two dimensions. The diffusion is biased so that plus or minus spins hop preferably to the left or to the right, which generates a flocking transition at low temperature and high density. We construct a coarse-grained description of the model that predicts this transition to be a first-order liquid-gas ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 26 11  شماره 

صفحات  -

تاریخ انتشار 2010